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The use of "dimensional invariants" relating critical size fractions, coordination 
number, and dimension is investigated for fluid "invasion percolation" on 
correlated and uncorrelated networks. A new descriptor, the fraction of passable 
pores, is introduced to unify the treatment of drainage and imbibition (or bond 
and site percolation) processes, and to calculate new, approximate dimensional 
invariants. Not only do drainage and imbibition processes in lattices where pore 
and throat sizes are correlated have similar critical values for the fraction of 
passable pores for a given coordination number and dimension, but this fraction 
is also only slightly dependent on coordination number, namely to a power of 
about 0.17. 

KEY WORDS:  Critical points; dimensional invariants; percolation in 3D 
lattices; correlated lattices; immiscible fluid displacement in porous media. 

1. I N T R O D U C T I O N  

Percolation processes are either pore (site) or throat (bond) controlled and 
it is hence customary to determine critical points in terms of fractions of 
these elements. Except for rather standard situations, these critical fractions, 
e.g., the fraction of invadable pores, must be determined by carrying out a 
large number of simulations on appropriate grids. The existence of 
invariant expressions can circumvent this if certain simple properties, such 
as coordination number, are known. The current method of approximately 
determining critical points utilizes invariants based on statistical quantities 
and supplements previous work wherein we showed the wide applicability 
of statistical methods to obtain quantities important to two-phase flow in 
porous media. (1) 
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We wish to communicate numerically derived invariant expressions 
relating critical fractions, coordination number, and dimension, at the 
invader breakthrough point (first critical point) as well as at the defender 
disconnection point (second critical point) when drainage and imbibition 
problems are modeled as invasion percolation processes. We shall also 
argue that a new descriptor introduced below, the fraction of passable 
pores, is an appropriate and extremely powerful tool for analyzing critical 
points and for producing new invariants more widely applicable than the 
former versions. 

While the following methods are inspired by fluid flow in porous 
media, they are applicable to ordinary percolation, too. Indeed, ordinary 
percolation and invasion percolation will have identical first critical points, 
whether they are defined in the manner of Wilkinson and Willemsen, (2) or 
more loosely as a method of percolation where only those invadable bonds 
and sites are invaded which are adjacent to elements already containing the 
new phase. Only certain fractal properties may change. ~3) 

1.1. Representation of Results 

1.1.1. Old Invariants .  For the standard bond and site percolation 
problems there exist already simple "invariant" relationships for deter- 
mining the critical breakthrough point in terms of "invadable" pore or 
throat fractions of a random network. The details of the geometry of the 
percolating network play no role. The relationship obtained by Vyssotsky 
et aL (4) for drainage (the bond problem) is particularly easy to use. With Z 
for the coordination number, tcl for the fraction of throats larger than the 
first critical size, and E, the Euclidean dimension, the invariant is 

z t~ l  = F_ , / (E -  1 ) ( 1 ) 

The product Ztc1 is the average number of invadable throats per pore. This 
expression gives the correct value of t,l to within a few percent for a 
network of randomly distributed throat sizes. (5) The applicability of an 
extension of this relation to networks in which throats are not random but 
depend on neighboring pore sizes will form a part of this report. 

For imbibition (the site problem) Scher and Zallen (6) state that if 
all pores are considered to be touching spheres of equal size, then at the 
first critical point the volume fraction of those considered penetrable is 
dependent on dimension only. The volume fraction or density p of 
"conducting" spheres is given by 

f ( Z )  Pc1 = p(E)  (2) 
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where f is the filling factor (or volume ratio between total sphere volume 
and sample volume). The value f ( Z )  depends on the coordination number 
Z of the underlying lattice. For a honeycomb lattice f=0 .6046 ;  for a 
square lattice, f =  0.7854; for a triangular lattice, f =  0.9069; and for a cubic 
lattice, f = 0.5230. The critical fraction of conducting spheres is Pc1 and is 
called the fraction of invadable pores in our case. The dimensional 
parameter p(E)  is 1 in one dimension, 0.44 in two dimensions, and 0.15 in 
three dimensions. Rather than extend this relation, we intend to show that 
imbibition can be described quite satisfactorily using invariants which are 
structurally the same as those for drainage. 

1.1 .2 .  E x t e n s i o n s  and N e w  I n v a r i a n t s .  We will extend the 
application of a Vyssotsky type of invariant to imbibition and to drainage 
in correlated networks (by which we mean networks wherein the size of 
neighboring elements is determined, in part, by an analytic relation). These 
invariants are to be presented in the form 

zexp . . . .  t tel = const (3a) 

Z~Xp . . . .  t Pc1 = const (3b) 

The subscript c 1 indicates values at the first critical point. The applicability 
of this extended Vyssotsky relation to the second critical point for both 
drainage and imbibition in uncorrelated and correlated lattices will be 
investigated. These invariants are to be presented in the form 

z e x p  . . . .  t tc 2 = const (4a) 

Z~Xp . . . .  t Pc2 = const (4b) 

where the subscript c2 indicates values at the second critical point where 
the defender becomes disconnected from the source. 

Since our interest centers on flow in porous media, we propose a 
descriptive parameter which emphasizes "flow or no flow" and suggest the 
use of fractions of passable, or impassable, pores to characterize both 
drainage and imbibition processes. The term "passable" denotes pores sur- 
rounded by at least two open throats; the fraction of impassable pores is 
the complement of passable pores. We can reformulate the question from, 
"What is the fraction of invadable pores or throats at the critical point?," 
to, "What is the fraction of pores which can be passed through at a critical 
point?." It will turn out that this newly introduced descriptor permits one 
to unify not only imbibition processes with drainage processes, but 
drainage processes in lattices with both random and correlated structures. 
This recognizes that ultimately formulas such as those of Vyssotsky et al. (4) 
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and of Scher and Zallen (6) are based on arguments that turn on the average 
number of open throats per pore at the critical point. The new invariants 
may thus be viewed as an extension of a viewpoint which puts emphasis on 
the average number of next neighbor pores reachable from a given pore at 
the critical point. Such a viewpoint is indeed capable of considerable 
unification of results for different lattices and even different processes. This 
second type of invariant will be presented in the form 

or  

zexp . . . .  t f(, = const (5) 
J l m p a s s  

z e x p o n e n t / c P  
J p a s s  ~ const (6) 

Equation (5) will apply to the first critical point, Eq. (6) to the second 
critical point. In all of the relations (3)-(6) the value of the exponent of 
Z is adjusted such that, on using the relevant experimental values 

p ~' (Icl, f imp . . . .  etc.), the product so formed, "the constant, is stable over the 
range of coordination numbers employed. 

1.2. Methods  

The details of our procedure can be found elsewhere ~1'7'8) and we 
present here only sufficient information to carry the argument. 

1.2.1.  T h e  La t t i c e s .  Lattices are created in which pores (sites) are 
selected from a distribution uniform between 0 and 1. Throats (bonds) 
are selected at random from a uniform distribution (uncorrelated case) 
or are selected on the basis of the size of adjacent pores such that the 
throats will be smaller than the pores (correlated case; specific examples 
will appear later). (8) The number of throats connecting a given pore to its 
neighbors is the coordination number Z; for two dimensions 2 ~< Z ~< 6 and 
for three dimensions 2 ~< Z~< 8. The lattices are initially square in two 
dimensions or cubic in three dimensions except for the highest coordina- 
tion numbers, where the lattices are triangular and octagonal in two and 
three dimensions, respectively. In two dimensions, low-coordination- 
number lattices are produced by randomly blocking throats in square 
lattices; in three dimensions, throats in cubic lattices are blocked. Pores 
and throats contained in unreachable domains which are a result of 
randomly blocking throats are not counted (that fraction is quite small for 
large lattices except for Z approaching 2). The simulations show no signifi- 
cant difference between using regular lattices of low coordination number 
and using a high-coordination-number lattice in which the coordination 
number has been lowered by some random blocking of throats. For very 
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low coordination numbers, growing domains of the lattice are cut off. The 
difference between intended and effective coordination number grows 
quickly, and the dimensional invariants derived later no longer fit the data 
closely. 

In two dimensions experimental values represent averages from 50 
lattices of size 128 x 256; in three dimensions, 20 lattices of size 48 x 48 x 96 
were used unless a cavea t  is introduced. The breakthrough points are deter- 
mined experimentally by simply stepping toward them in steps of 0.01 of 
the controlling pore or throat size. The corresponding fractions of 
invadable and penetrable pores can be determined either from the simula- 
tions or analytically (the agreement between calculated and experimental 
fractions of passable pores is extremely good and deteriorates only for very 
low coordination numbers(l'7)). 

1.2.2. T h e  P e r c o l a t i o n  P r o c e s s .  In the initial state the lattice is 
fully occupied by a "defender fluid"; the source of the "invader fluid" is one 
edge of the grid and the sink is the opposite edge. Advance of invader is 
controlled by a simple size rule; in drainage the size of the throat and in 
imbibition the size of the pore are checked. The physical nature of displace- 
ment is maintained by ensuring connectivity of fluid to sink and/or source. 
The earliest examples are given by Fatt ~9) and deGennes and Guyon. (1~ 
These early investigators also made a natural connection to so-called 
capillary pressure curves, which display the pressure as a function of the 
amount of fluid pressed into a porous medium. The possibly better known 
work by Broadbent and Hammersley (11) lists fluid percolation only as an 
example of a percolation experiment without entering into any details. 
Invasion percolation as introduced by Wilkinson and Willemson ~2) is a 
special case insofar as only one bond or site is invaded at the time, namely 
the "most invadable" element. We are interested only in approximate 
critical values and hence invade all invadable elements (pores or throats) 
which can be reached by invader each time the "pressure" is changed by a 
finite step. Then the connectivity of the defender is checked, since we also 
wish to detect the second critical point. 

The important difference between the current and the cited work con- 
sists not in the method of percolation, but rather in the use of correlation 
of throats to pore sizes along the lines introduced by Li e t a L  ~8) The fact 
that invading fluid has to pass through pores in order to invade a lattice 
suggested the introduction of the concept of passable pores (sites), which 
considerably unifies numerical results and thus shows up underlying 
similarities between processes in different lattices and even different 
processes. It is the power of this notion we will examine next through 
numerical examples. 
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2. BREAKTHROUGH FOR PERCOLATION MODELS OF FLOW 
IN POROUS M E D I A  

2.1. Drainage for an Uncorrelated Ne twork  

To illustrate our data and our procedure, we show, in Table l, the 
results for uncorrelated networks in both two and three dimensions. We 
present the primitive data, the coordination number Z and fraction of 
invadable throats tel, in the first two columns. Some of the critical frac- 
tions tel are of course known in the literature and may even be exact; we 
quote, for comparison, the following values for tc~ in two dimensions: 0.347 
for Z =  6, 0.500 for Z = 4, and 0.653 for Z =  3, which is for a honeycomb 
lattice. (5'12) The value we obtain for tc~ for Z = 6  is 0.355, and for Z = 4 ,  
tc~ = 0.508, the small deviations being a reflection of the finite size of our 
lattice and the step size of 0.01. We list the Vyssotsky product Ztct (i.e., the 
average number of invadable throats per pore) in the third column, and the 
new invariant o e Z f impass  in the last column. 

Except for values of Z close to the limits (Z = 2 and Z --- 8), both the 
Vyssotsky product Ztcl and the new invariant o p Z j4"impass are indeed well 
behaved. The former has the values 2.02 and 1.52, very close to the values 
of 2.00 and 1.50 predicted by Eq. (1). The new invariant is just the fraction 
of impassable pores f ?  (since the best value of the exponent of Z is irnpass 
zero) and this indeed is essentially constant for all Z values. One has 

P P fimpass = 0.30 for the two-dimensional case and f impass  = 0.52 for the three- 
dimensional case. 

The instability in the invariants at the largest coordination number is 
occasioned by a change in lattice type and at the lowest value of Z by the 

Table I. Dra inage  in Uncor re la ted  N e t w o r k s  

Two dimensions Three dimensions 

Z t,.~ Z t~ l  o e Z t~ l  o P Z fimpass Z tcl Z firnpass 

2.1 0.963 2.02 0.27 2.0 0.763 1.52 0.48 
2.25 0.902 2.03 0.28 2.5 0.607 1.53 0.51 
2.5 0.807 2.02 0.29 3.0 0.506 1.52 0.52 
3.0 0.680 2.04 0.29 3.5 0.435 1.52 0.52 
3,5 0.581 2.03 0.30 4.0 0.381 1.52 0.53 
4,0 0.508 2.03 0.30 5.0 0.306 1.53 0.52 
6 0.355 2.13 0.31 6.0 0.257 1.54 0.52 

8.0 0.186 1.49 0.55 
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fact that the desired coordination number may differ significantly from the 
effective coordination number because of the "cutoff" regions referred to 
earlier. 

2.2. Drainage in Lattices with Correlated Throat Sizes 

Since for many porous media, such as Indiana limestone, the pore and 
throat sizes appear to be strongly correlated, (13) it is of interest to see 
whether the notion of invariants of the types investigated in the previous 
section can be applied to percolation processes on correlated lattices. We 
investigated two different but illustrative correlations; in the first, the 
throat is taken to have the same size as the smaller of the two pores it 
connects, and in the second the throat size is taken to be given by the 
product of the normalized size of the adjacent pores. 

Table II shows breakthrough critical sizes in drainage for these 
correlated lattices for a series of coordination numbers. As before, the 
generalized Vyssotsky invariant is quite stable within a given lattice type, 
but again is not stable when the lattice type is changed. Nor is the 
generalized Vyssotsky relation stable to a change in correlation type. The 
values for the Vyssotsky product for the two differently correlated three- 
dimensional lattices are fitted best by, respectively, z l2~  1.5 and 
Z I55 tc l=  1.9 for the range 2 ~< Z ~< 6. 

The new invariant, Z exv . . . .  t fp  appears to be stable within a given - -  a i m p a s s ,  

lattice type and is also stable with respect to changes in the underlying 
geometry. Moreover, it is virtually the same for differently correlated 
lattices and can be encompassed by the form 

Z - o . 1 7 / e P  0 5 9  
J i m p a s s  ~ . . . .  

Table II. Drainage in Three-Dimensional  Correlated Lattices 

Throat  size Ty = rain of P~ or Pj Throat  size T O = product Pi  • P j  

0 17 P --0.17 P Z lcl Z 1 2~ Z f impass  tel zl55tcl Z finapass 

2.0 0.678 1.56 0.51 0.659 1.93 0.49 
2.5 0.502 1.51 0.56 0.471 1.95 0.53 
3.0 0.394 1.47 0.58 0.352 1.93 0.56 
3.5 0.326 1.47 0.59 0.272 1.90 0.57 
4.0 0.281 1.48 0.59 0.219 1.88 0.58 
5.0 0.215 1.48 0.60 0.156 1.90 0.58 
6.0 0.180 1.55 0.59 0.118 1.91 0.58 
8.0 0.064 0.77 0.59 0.071 1.77 0.58 
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Not only is e fimpass the same for differently correlated networks for a given 
Z, but the very small exponent indicates also e that fimpass is almost coor- 
dination number independent. One should, however, notice that the effect 
of throat correlation is destroyed by lower coordination number, since, as 
is clear from the tables, tel must approach unity as the intended coordina- 
tion number Z approaches 1.5 (the "effective" coordination number deter- 
mined for the domain of accessible pores converges to two). 

2.3. Irnbibition 

The case of imbibition is of course different from the previously dis- 
cussed cases in that it is a pore-controlled process. Nevertheless, expres- 
sions can be derived which are analogous to those for drainage. (1'7) The 
values for the controlling fraction Pc1, the extended Vyssotsky relation, and 
the new passable pores invariant are all listed in Table III. The fractions of 
invadable pores (pores small enough to be invaded) follow the equation 

Z~176 pc I = 1.35 

The fraction of impassable pores, which is now defined as the fraction 
of invadable pores adjacent to at most one invadable pore at a given 
pressure, follows the relation 

Z - ~  P = 0 . 5 8  Jlmpass 

Notice again the very small exponent in the three-dimensional case, which 
indicates that e fimpass is almost coordination number independent. 
Moreover, this expression for imbibition is the same as obtained in the 
previous section on drainage for the two correlated cases! This makes the 
last formula very widely applicable indeed. 

Table III. I m b i b i t i o n  

Z Pc1 z~176 Z-~ Jimpass 

2.0 0.788 1.37 0.51 
2.5 0.650 1.35 0.56 
3.0 0.555 1.34 0.58 
3.5 0.494 1.34 0.59 
4.0 0.443 1.34 0.59 
5.0 0.369 1.34 0.59 
6.0 0.322 1.35 0.59 
8.0 0.250 1.32 0.59 
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3. THE ENDPOINT IN NETWORK MODELS OF FLOW IN 
POROUS M E D I A  

3.1. Representation of Results 

The investigation of the previous section has indicated the existence of 
two different invariants characterizing breakthrough. Perhaps more impor- 
tant, it has begun to appear that the notion of "passable pores" has the 
potential to unify a number of different processes via the relation 

e x p o n e n t  / c P  = const 
J l t l a p a s s  

This potential has persuaded us to apply it to the second critical point, the 
point of disconnection of the defender fluid from the source. After all, it is 
this point which determines the amount of fluid which may be displaced 
from a porous medium. 

The fractions which best describe breakup of the defender are not 
quite the same as those useful to determine breakthough. While break- 
through is generally well characterized by relations involving either the 
fraction of invadable throats (pores in imbibition) or the fraction of 
impassable pores, the second critical point is best described by relations 
involving the complements of the latter fractions. 

3.2. Results 

In this section we report the values, at disconnection of defender, of a 
set of characteristic quantities beginning with the usual controlling element 
tc2, the fraction of throats greater than a critical size, followed by the 
Vyssotsky-like invariant Z exp . . . .  t tc2, and the new invariant ,7~ exp . . . .  t fP 

- -  J p a s s  ' 

The data were obtained in the same manner as those for the breakthrough 
points; Table IV is for drainage in an uncorrelated lattice, Table V is for 

Table IV. Disconnection: Drainage in an Uncorrelated 
Three-Dimensional  Lattice 

Z tc2 Z 1/21c2 Z 0.17fpassP 

3 0.563 0.25 0.46 
3.5 0.495 0.27 0.45 
4.0 0.447 0.28 0.46 
4.5 0.408 0.28 0.45 
5.0 0.373 0.28 0.46 
6 0.320 0.28 0.46 
8 0.254 0.26 0.45 
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Table V. 

Maier  and Laidlaw 

Disconnection: Drainage in Two Correlated Three 
Dimensional Lattices 

Throat  size Tu = rain of Pi or Pj Throat  size T,~ = product P, x Pj 

0.45 P -- 0.45 P Z lc2 Z -0 l~ Z fpa~ tc2 z-O'l~ Z fpass 

3.0 0.445 0.50 0.27 0.469 0.48 0.27 
3.5 0.415 0.52 0.27 0.423 0.51 0.27 
4.0 0.408 0.52 0.28 0.398 0.52 0.26 
4.5 0.429 0.49 0.30 0.406 0.51 0.28 
5.0 0.426 0.49 0.29 0.406 0.51 0.28 
6 0.470 0.44 0.30 0.408 0.50 0.28 
8 0.576 0.34 0.30 0.469 0.43 0.28 

drainage in the two kinds of correlated lattices, and Table VI is for imbibi- 
tion. These results show the same kinds of connections found while 
investigating breakthrough points, the principal difference being the 
replacement e P 

p a s s '  of fimpas s by Once again, drainage in correlated lattices 
and imbibition have their endpoints at the same fractions, this time of 
passable pores, the resulting relation being 

Z o.45fe 0 3 
p a s s  ~ " 

For drainage in uncorrelated lattices the relation is 

Z-OA7fe =0.46 
J p a s s  

The value of 0.17 is the same as that which was found for imbibition (and 
drainage in correlated lattices) at the breakthrough point. The constant, 
too, is roughly the same, about three-quarters of the previously found 
value. 

Table VI. Disconnection: Imbibition in a 
Three-Dimensional  Lattice 

Z le2 Z ~ 1 7 6  Z 0.45fpass~ 

3.0 0.735 0.24 0.32 
3.5 0.697 0.27 0.28 
4.0 0.678 0.28 0.31 
4.5 0.670 0.28 0.30 
5.0 0.670 0.28 0.30 
6 0.693 0.26 0.31 
8 0.698 0.25 0.27 



Critical Points in Network Models 279 

4. D I S C U S S I O N  

Table VII summarizes the exponents and constants found for the 
invariants investigated in this work. The column headings A, B, C, and D 
indicate results for different processes: (A) for drainage in uncorrelated 
networks, (B) for drainage in minimally correlated networks, (C) for 
drainage in product-correlated networks, and (D) for an imbibition 
process. For the "new" section of Table VII, the row labels "exponent" 
and "constant" indicate exponents and constants for our new invariant in 
the form 

zexponen t  f~o ---- const and ~,exp . . . .  t re const 
J l r n p a s s  - -  J p a s s  

at the breakthrough and disconnection critical points, respectively. For the 
"Vyssotsky" section of Table VII, the row labels indicate the exponent and 
constant for the Vyssotsky relations 

Z exp~ tcl= const and Z exp~ to2 = const 

for breakthrough and disconnection critical points, respectively, of a 
drainage process. Since, in the Vyssotsky case, the invariant for imbibition 
is expressed in terms of pores, the values quoted in column D of the 
Vyssotsky section of Table VII are for the exponent and constant for the 
form 

z e x p ~  Pc1 = const and z e x p ~  Pc2 = const 

It is clear from the table that, for a given coordination number, the 
fractions of impassable pores at breakthrough are effectively the same for 
the two types of correlation and for imbibition, since the invariants are 
identical! The extended Vyssotsky invariant are much less stable. 

The equivalence between drainage in a minimally correlated lattice 

Table VII. Values of the Exponent and Constant for the Invariants a 

Invader Breakthrough Defender disconnection 

Relation Values A B C D A B C D 

New Exponent 0 - 0 . 1 7  - 0 . 1 7  - 0 . 1 7  - 0 . 1 7  -0 .45  -0 .45  -0 .45  
Constant  0.5 0.58 0.58 0.58 0.46 0.29 0.29 0.29 

Vyssotsky Exponent 1 1.20 1.55 0.80 - 0 . 5  - 0 . 1 0  - 0 . 1 0  - 0 . 1 0  
Constant  1.5 1.5 1.9 1.32 0.27 0.5 0.5 0.25 

a See text for explanation of headings A D. 
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and imbibition is relatively easily established. It is true that correlation per- 
mits one to relate throat dependence to pore sizes so that the pores become 
the controlling elements for drainage as well as for imbibition. Since, by 
definition, throats are supposed to be smaller than pores, the receding 
menisci in drainage are stopped by the small throats, while the advancing 
menisci in imbibition are stopped by the large pores. For drainage in a 
correlated network created by the relation t = min(pi,  P2), percolation is 
established by seeking the larger throats. The boundaries of the percolating 
structure are established by the smaller throats. For imbibition one can 
create a percolating network by first replacing the pore sizes in the original 
network by their complement 1 - p," i.e., the large pores are replaced by the 
small, and of course, since the pores are uncorrelated, this is still an 
uncorrelated network. 

One can now attempt to establish percolation by selecting the smaller 
pores. Now the boundaries of the percolating structure are set by the larger 
pores. The percolating structure is the same in both cases! Consequently, 
for a given Z the fraction of impassable v pores fJmpass at breakthrough of 
invader in the correlated network t = min(p~, P2) is the same as for imbibi- 
tion on an uncorrelated network. 

The case where t =  ( p l .  P2) is more complicated. Suppose then that 
we have a pore in a two-dimensional lattice, surrounded by four neighbor- 
ing pores which shall be smaller than the central pore. If we now multiply 
the throat sizes in this local system by the size of the central pore, then 
nothing happens to the ratio of the sizes of these throats. If only half of the 
neighboring pores are smaller than the central pore, then multiplication of 
the throats with the larger pore size once again will not disturb the order 
of the throats except for differentiating those which by the previous method 
of correlation were the same. Hence there is no local change if we change 
the method of correlation, although this will not apply to the whole lattice 
in this strict form. One should, however, expect a close, but not perfect, 
correspondence between the percolating structures for the correlation 
t=min(p~,  P2) and the correlation t =  (p~ * P2). Consequently, the close 
correspondence between the values of f P  for the two correlated impass 
networks shown in Table II for breakthrough and in Table V for discon- 
nection is not surprising. It can be shown that we cannot change from one 
method of correlation to another without changing in some degree the 
number of invadable throats per pore. O'7) 

The similarity in the invariant -0.17 P Z fpass for the drainage disconnec- 
tion point for an uncorrelated network and the invariant Z - ~  e for impass 
breakthrough in imbibition is remarkable, but is left without explanation 
except to say that dependence on uncorrelated throats in the former 
appears to be the same as for uncorrelated pores in the latter. 
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5. C O N C L U D I N G  R E M A R K S  

Our  investigations show that  a general izat ion of the Vyssotsky dimen- 
sional invariant ,  Z exp . . . .  t t c = const or Z exp . . . .  t pc = const, can successfully 

describe both  breakthrough of invader  fluid and disconnect ion of defender 
fluid in correlated lattices. Exponent  and constant  depend on the case 
under  investigation. To remove this sensitivity to the details of the case, we 

have in t roduced the new parameters  fPmpass and  fpeass to characterize critical 
points. For  a given coord ina t ion  n u m b e r  these latter quanti t ies are the 
same for drainage on our correlated lattices and  for imbibi t ion.  They also 

allow the in t roduc t ion  of numerical ly quite stable invar iants  of the form 
zexp . . . .  t f~' = c o n s t  or Z eXp . . . .  t f~  =cons t .  As is evident from 

J l m p a s s  - -  J p a s s  

Table VII, these new, numerical ly  derived invar iants  are more "portable" 

than those of the "extended Vyssotsky invar iant"  type. 
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